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ABSTRACT: Electron energy loss spectroscopy (EELS) and cath-
odoluminescence (CL) have proved during the past few years to be
tremendous tools to study surface plasmons in metallic nanoparticles,
thanks to an extremely high spatial resolution combined with a broad
spectral range. Despite their apparent close resemblance, qualitative
differences between EELS and CL have been theoretically as well as
experimentally pinpointed. We demonstrate that these differences are
recovered when comparing the full electromagnetic local density of states (EMLDOS) and the radiative EMLDOS. Following the
known relation established between EELS and the projection along the electron trajectory of the full EMLDOS, we introduce a
formalism based on the Maxwell electric Green tensor to draw a link between CL and the projection along the electron trajectory
of the radiative EMLDOS. We discuss in simple terms the differences between EELS (projected full EMLDOS) and CL
(projected radiative EMLDOS) through modal decompositions obtained in the quasistatic approximation. Contrary to EELS, CL
probes only the radiative modes. Furthermore, CL resonant line shapes may be shifted and asymmetric compared to EELS. The
CL asymmetry is due to interferences in the far-field radiation from spectrally and spatially overlapping modes. Our analytical
expressions are illustrated through boundary element method numerical simulations.
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The electromagnetic local density of states (EMLDOS) is a
key and ubiquitous quantity in nanooptics.1,2 For

example, the EMLDOS defines the density of states of given
energy locally available for the electromagnetic field3 and
provides the basis from which various macroscopic quantities
can be derived, such as heat capacities or forces.4 By analogy
with the local density of states of quantum physics, the
EMLDOS is also used to describe the spatial variations of the
surface plasmon (SP) modes of metallic nanoparticles.5 Finally,
the EMLDOS governs the light emission properties of quantum
emitters by dictating their spontaneous decay rate. In general,
decay can occur through either radiative or nonradiative
channels. To quantify radiative decay rates, a radiative
EMLDOS, as opposed to the full EMLDOS, can be introduced.
A precise knowledge of both the radiative and full EMLDOS is
crucial for decay rate engineering. Different techniques can
today obtain either the full EMLDOS or the radiative
EMLDOS. For instance, thermal radiation scanning tunneling
microscopy and illumination mode scanning near-field optical
microscopy can be ideally viewed as measuring respectively the
spatial variations of the full and radiative EMLDOS at constant
energy.6,7 Recently, the combined measurement of the lifetime
and fluorescence intensity of fluorescent scanning probes has
also provided a simultaneous access to these two quantities.8

However, a drawback of these methods is that they allow only
monochromatic measurements. Any experimental access to the

spectral and spatial variations of the EMLDOS using these
techniques remains currently out of sight.
Fast electron based spectroscopies analyze the interaction of

fast electrons with a sample through either their energy loss
(electron energy loss spectroscopy, EELS) or the subsequently
emitted photons (cathodoluminescence, CL). Over the past
few years, these techniques have attracted growing attention.
EELS and CL allow large data sets of spectra extending from
the IR to the UV to be collected with nanometer spatial
resolution.9,10 Pioneering experiments have suggested that both
EELS and CL probe the spatial and spectral properties of the
SP modes sustained by metallic nanoparticles.11−14 The
EMLDOS has been introduced as a theoretical support to
interpret these experiments.15,16 It has been firmly established
that EELS is closely related to the projection along the electron
direction of the full EMLDOS.15,17 On the other hand, the
radiative EMLDOS has been suggested as a basic quantity to
which CL could be compared.16 Nevertheless, the distinction
between the full EMLDOS and the radiative EMLDOS was
elusive, and CL experiments have further been theoretically
related either to the EMLDOS18,19 or to the radiative
EMLDOS.20 At present, it seems that there is no general
consensus regarding which quantity CL should be compared to.
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Overall, EELS and CL experiments on metallic nanoobjects
give very similar outputs.21,22 Nevertheless, differences between
EELS and CL could be anticipated over the past decade. As a
simple example, analytical calculations on spheres have shown
that, for small quasistatic objects, CL should probe the dipolar
modes only, contrary to EELS, which also probes the
multipolar modes.23 This has been experimentally demon-
strated only recently through combined EELS and CL
experiments on single small nanoparticles.24 This simple
example of a difference between EELS and CL shows that a
link between CL and the radiative EMLDOS, as opposed to the
link between EELS and the full EMLDOS, should be firmly
established.
In this article, we extend the link between EELS and the full

EMLDOS to CL and the radiative EMLDOS. We introduce a
general and unified formalism based on the Maxwell Green
tensor to provide a clear comparison of these four quantities.
We then point out differences between EELS (full EMLDOS)
and CL (radiative EMLDOS) by deriving and discussing modal
decompositions in the quasistatic approximation. The findings
are illustrated through retarded boundary element method
(BEM) numerical simulations.25−27 This work demonstrates
the great interest in performing combined EELS and CL
experiments for plasmonics studies.

■ GENERAL THEORY
In this section, we set generally the link between the radiative
EMLDOS and CL as opposed to the link between the full
EMLDOS and EELS. The resemblance between the full
EMLDOS and EELS on one hand and the radiative EMLDOS
and CL on the other can be straightforwardly captured from
classical electrodynamics definitions2,10 (see Methods section).
The full EMLDOS and EELS measure the total amount of
energy transferred from an elementary excitation (mono-
chromatic point dipole in the case of the full EMLDOS, fast
electron in the case of EELS) interacting with a polarizable
system, while the radiative EMLDOS and CL probe the part of
this amount that is transferred to the far field. For the sake of
clarity, the quantities we discuss are summarized in Table 1. We

note that energy conservation dictates that, in the ideal case of a
nonabsorbing system, the radiative EMLDOS is equal to the
full EMLDOS and the quantities measured by CL and EELS
are the same.15 However, the systems that we consider are
metallic, which is why we need to make a distinction between
radiative EMLDOS (CL) and full EMLDOS (EELS).
Mathematically, the projection along the unit vector en⃗ of the

full EMLDOS (n-LDOS) and radiative EMLDOS (n-rLDOS)
at position r0⃗ and energy ℏω0 can be defined2 in Gaussian units
as
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In these expressions, E⃗d(r,⃗ ω) and fd(Ω, ω) are the total electric
field and far-field amplitude produced by a dipole of moment p0⃗
and frequency ω0 located at point r0⃗. In the definition of the far-
field amplitude, Ω denotes the direction of a vector r ⃗ pointing
toward infinity. It is solely defined in spherical coordinates by
the combination of polar angle and azimuth angle. dΩ is the
unit solid angle centered around Ω. Furthermore, the quantities
measured by EELS and CL can be expressed, for a given
electron trajectory re⃗(t) and a given energy ℏω, as10
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In eqs 3 and 4, E⃗el
ind(r,⃗ ω) and fe⃗l

ind(Ω, ω) denote the induced
parts of the electric field and far-field amplitude produced by
the fast electron, which are obtained by removing the free-space
solution from the total electric field. v ⃗ is the electron velocity,
and ΩD is a detection solid angle within which light is collected.
The relation between the full EMLDOS, the radiative

EMLDOS, EELS, and CL can further be synthesized by
introducing the electric Green tensor ω⃡ ⃗ ′⃗G r r( , , ) at points r ⃗
and r′⃗ and frequency ω (see Methods section for details). The
n-LDOS and n-rLDOS then reduce to
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Equation 5 is well known and can also be found either from a
quantum mechanical or a statistical definition of the
EMLDOS.2 In order to derive eq 6, we introduce (see
Methods) the far-field asymptote of the Green tensor

ω⃡ Ω ′⃗∞G r( , , ), which depends on the direction Ω, position r′⃗,
and frequency ω. Contrary to G⃡, ∞⃡G does not depend on the
full position r,⃗ as it is independent of its modulus. However, it
does depend on its direction through Ω. In eq 6, []T denotes a
tensor transpose. Similarly, EELS and CL can be expressed,
considering a fast electron traveling along the z axis at position
R⃗(re⃗(t) = R⃗ + z(t)ez⃗), as:
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Table 1. Discussed Quantities

abbreviation symbol equations description measurement

n-LDOS ρn 1,5,13 projection along en⃗
of the full
EMLDOS

decay rate of quantum
emitter

n-rLDOS ρn
rad 2,6,14 projection along en⃗

of the radiative
EMLDOS

radiative decay rate

EELS ΓEELS 3,7,15 electron energy loss
probability

electron energy loss
spectroscopy

CL ΓCL 4,8,16 electron-induced
light emission
probability

cathodoluminescence
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In eq 7, which has been der ived previous ly ,15
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is the Fourier transform of G⃡
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respect to z and z′. In eq 8, ωΩ ⃗
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is the Fourier

transform of ∞⃡G
ind

with respect to z. For both expressions, G⃡
ind

denotes the induced part of the Green tensor, which is obtained
from the Green tensor by subtracting the free-space
contribution.
The advantage of the formalism given by eqs 5 to 8 is

twofold. First, these expressions are universal. In particular, they
can be used in conjunction with any modal decomposition of
the Green tensor. We will consider one simple example in the
following section. Second, these expressions clearly point out
the fact that generally EELS can be related to the z-LDOS,
while CL can be related to the z-rLDOS. Precisely, EELS and
CL can be viewed respectively as probing generalized full and
radiative densities of states that are local in real space along the
R⃗ direction and in momentum space along the z direction, as
was well established for EELS and the full EMLDOS only.15,17

We note an additional free-space contribution within the full
and radiative EMLDOS compared to EELS and CL, which is
due to the fact that contrary to a dipole a fast electron in a
vacuum does not lose any energy. While this term leads to
some minor differences between EMLDOS and fast electron
based spectroscopies, we will consider exclusively the induced
part of the Green tensor to focus on the resemblance between
the z-LDOS and EELS as opposed to the resemblance between
the z-rLDOS and CL.

■ MODAL DECOMPOSITIONS

In order to illustrate the consequences of the link between
EELS (CL) and full EMLDOS (radiative EMLDOS) on their
spatial and spectral variations, we now turn to deriving modal
decompositions. Contrary to the textbook case of a non-
absorbing and nondispersive closed system,2 the link between
the Green tensor and the eigenmodes is not straightforward for
an arbitrary system. In the following, we consider a small
metallic object of dielectric function ϵ(ω), in such a way that
the quasistatic approximation can be applied close to the object
(in the near field). For small objects, the main energy loss
mechanism is the excitation of SP modes, whose oscillations
can give rise to light emission. We note that introducing the
quasistatic approximation leads to a very slight violation of the
energy conservation principle, as the full energy transfer is
equal to the energy absorbed by the object without any
contribution from the energy transferred into the far field.
However, it allows defining rather easily SP modes for arbitrary
geometries that, as pure surface charge density waves, have a
very intuitive nature.
In a BEM formalism, the SP modes of the object can be

defined through the electric fields E⃗i(r)⃗ obtained from a
biorthogonal basis of geometric eigenmodes that only depend
on the shape of the object.9,28−30

Besides a contribution that does not depend on the object

geometry and gives rise to bulk energy losses, G⃡
ind

contains a
surface term that can be expanded in the eigenmode basis.30

Thanks to the biorthogonal character of this basis, this
expansion reduces to a simple single summation over the
modes. For simplicity, we consider in the following that the
object is surrounded by vacuum. If r ⃗ and r′⃗ are located outside

the object, G⃡
ind

then reduces to the surface term and reads30
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In this expression, λi is a real eigenvalue. f i(ω) can be viewed as
a spectral function characteristic of mode i.29 The spectral
weight of mode i in the decomposition is dominant at the
energy ℏω that satisfies29,30

λ ω ω
ω

= + ϵ
− ϵ

( )
1 ( )
1 ( ) (11)

The advantage of the above set of equations relies on the fact
that it explicitly depends on the object dielectric function
without imposing any model. Therefore, any resonance line
shape directly related to the optical properties of the metal can
be reproduced.
The modal decomposition of eq 10 can be used directly to

express the spatial and spectral variations of the full and
radiative EMLDOS as well as EELS and CL through eqs 5 to 8.
Because the object has very small dimensions compared to the
radiation wavelength, one can show that the induced part of the
far-field asymptote of the Green tensor satisfies:
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where pi⃗⊥(Ω) = p⃗i − er⃗·p ⃗ier⃗ is the transverse component of the
dipole moment p ⃗i associated with the surface charge
distribution of mode i.24We find that the contributions of

G⃡
ind

to the n-LDOS and n-rLDOS can be written, if r0⃗ is
located in vacuum, as
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Furthermore, EELS and CL can be written, assuming that the
electron travels exclusively in vacuum, as
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In the above expressions, Ei
n(r)⃗ and Êi

z(R⃗, kz) respectively
denote the projection along en⃗ of the electric field of mode i and
the projection along z of the Fourier transform along z of the
electric field of mode i. In the case of the full EMLDOS and
EELS, we find the expressions given in ref 30, while the
expression for the radiative EMLDOS is new and the one for
CL is an extension of an approximate expression valid for non-
overlapping modes published recently.24

■ GENERAL DISCUSSION
In this section, we discuss generally the modal decompositions
given in eqs 13 to 16. Despite their similar spatial dependences,
several consequences of the different character of the full
EMLDOS (EELS) compared with the radiative EMLDOS
(CL) can be viewed in the above decompositions. First,
contrary to the full EMLDOS and EELS, the weight of each
mode within the radiative EMLDOS and CL depends on its
dipole moment. In particular, nondipolar modes contribute to
both the full EMLDOS and EELS, while being absent from the
radiative EMLDOS and CL. Moreover, the full EMLDOS and
EELS are written as simple incoherent sums of modes, while
the expressions for the radiative EMLDOS and CL include
additional intermode coupled terms. These terms are non-
vanishing when two dipolar modes overlap spatially through
their electric fields and spectrally through their response
functions f i(ω) provided that their dipole moments are
nonorthogonal. Except for these coupled terms, the spectral
variations of CL and the radiative EMLDOS are related to the
squared moduli of f i(ω), while the spectral variations of EELS
and the full EMLDOS are related to the imaginary parts of
f i(ω).
To comment in more simple terms on these spectral

variations, we further consider the special case of a metallic
object whose dielectric function is described by a Drude model
ε(ω) = 1 − ωp

2/(ω2 + iΓω) (ωp being the bulk plasmon energy
and Γ a damping term). Although this model is too simplistic to
accurately describe any real material, it allows obtaining simple
analytical expressions that capture well the essence of the
differences between full EMLDOS (EELS) and radiative
EMLDOS (CL) close to metallic objects. Introducing the
expression for the dielectric function within eq 11, one finds
that the spectral function of mode i can be written

ω
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where ω̃i = + λ1 iωp/ 2 ). It follows that the contributions
of mode i to the spectral variations of EELS (full EMLDOS)
and, in the absence of any intermode coupled term, CL
(radiative EMLDOS) are respectively proportional to
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Within a Drude model, the spectral variations of EELS (full
EMLDOS) and, in the absence of any intermode coupled term,
CL (radiative EMLDOS) are given by the Lorentzian line
shapes given by eqs 18 and 19. Due to the ω−2 factor between
ω ωℑ− f{ ( )}i

3 and |f i(ω)|
2, spectral shifts increasing with

dissipation are expected between the EELS (full EMLDOS)
and CL (radiative EMLDOS) resonances associated with a
single mode.24 Such spectral shifts have been experimentally
measured recently.24 Furthermore, the CL and radiative
EMLDOS resonances may be affected by the intermode
coupled terms, which can lead to asymmetric line shapes, while
the EELS and full EMLDOS resonances remain Lorentzian.
Previously, asymmetric CL line shapes as opposed to
symmetric EELS line shapes have been pinpointed as Fano
resonances in calculations on nanowires.32 Our analysis shows
that these asymmetric line shapes are due to interferences
between the far-field radiation from locally excited modes,
which cancel out in the full energy transfers due to additional
absorption contributions.
It is also worth commenting on the magnitude of the modes

in the decompositions with the help of the Drude model. By
definition, radiative modes belong to both the radiative and full
EMLDOS, while nonradiative modes belong to the full
EMLDOS only. The radiative character of a mode can further
be quantified by its relative weight within the radiative
EMLDOS, which can be inferred from the radiative EMLDOS
to full EMLDOS ratio at resonance for a fixed position. At the
resonance of mode i, one finds that the radiative EMLDOS to
full EMLDOS ratio is proportional to ω̃i

4|p ⃗i|2. Similarly, the CL
to EELS ratio at the resonance of mode i is proportional to
ω̃i

4∫ ΩD
dΩ|p⃗i⊥(Ω)|2 and can thus be taken as an equally valuable

quantification of the radiative character of the mode. The
relative weight of a mode within the radiative EMLDOS (CL)
increases with the dipole moment and the resonance energy of
the mode. Therefore, both the ability of the mode to efficiently
scatter light into the far field through its dipole moment and the
spectral range where its resonance energy falls are taken into
account within its radiative weight. In a Drude model, the
radiative weight of a mode increases with energy because
absorption losses decrease with increasing energy.
We note that our analysis leads to the conclusion that no

Fano-like interference can be detected in EELS for small
metallic objects, as opposed to the conclusion of Collins et al.,32

who proposed to interpret some intensity reinforcement along
nanowires as the result of some mode interferences. However,
our model is in accordance with their observations that CL
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resonances can be asymmetric as opposed to EELS and that the
spatial distributions of EELS and CL associated with a given
mode are the same. Nevertheless, our decompositions cannot
predict the complicated EELS and CL line shapes calculated by
Bigelow and co-workers in more complex bimetallic structures
with nonconnex geometry,33 whose Green tensor spectral
variations cannot be accounted for by the simple spectral
function given in eq 11.
In general, the Green tensor of single metallic objects may be

affected by the dielectric properties of the surrounding
medium.30 It can also be altered by retardation as the object
size grows. Retardation effects in EELS and CL include the
emission of transition radiation or Cherenkov radiation in
dielectrics.10 As another simple example, which will be
illustrated in the next section, CL can probe some radiative
modes with vanishing dipole moment for objects whose sizes
leave the quasistatic regime. Indeed, the absence of any higher
order mode in the radiative EMLDOS and CL is just due to the
fact that the dimensions of the object are very small compared
to the radiation wavelength. The absence of any higher order
mode in the radiative EMLDOS and CL can be avoided by
using alternative, retarded Green tensor expansions. The
simplest example one can use is a phenomenological expansion
for photonic eigenmodes accounting for weak losses2 (see
Supporting Information). However, such expansion is suitable
to describe qualitatively the spectral behavior of the EMLDOS
and fast electron based spectroscopies only in the simplest
cases. As an example, such a model predicts a red-shift of EELS
compared to CL, as opposed to the red-shift of CL compared
to EELS measured in small gold objects in the visible range.24

■ NUMERICAL SIMULATIONS

In order to illustrate the discussion from the last section, we
report the results obtained from BEM numerical simulations on

concrete cases of metallic objects. We first examine two
examples of small particles, in such a way that the quasistatic
theory can be safely applied and tested, before turning to larger
objects to investigate examples beyond the quasistatic limit.
As a first example, we consider a small gold equilateral

triangular nanoprism, whose shape and dimensions are
specified in Figure 1a. It has been shown that the EELS
spectra of triangular nanoprisms are dominated by two
degenerate dipolar modes and one hexapolar mode.34 Figure
1b shows the surface charge associated with one of the dipolar
modes (mode 1) and the hexapolar mode (mode 2). Because
the two dipolar modes are degenerate, they contribute equally
to the spectral variations of each modal decomposition without
any interference effect. Mode 2 being nondipolar, the spectral
variations of the radiative EMLDOS and CL are thus fully given
by the term |f1(ω)|

2 (for mode 1). In comparison, the spectral
variations of the full EMLDOS and EELS are dictated by both
ω ωℑ− f{ ( )}3

1 (mode 1) and ω ωℑ− f{ ( )}3
2 (mode 2). These

three quantities are plotted as a function of energy in Figure 1c
when using a realistic tabulated dielectric function for gold.35 As
clear from these spectra, the resonance of |f1(ω)|

2 appears to be
red-shifted compared to the resonance of ω ωℑ− f{ ( )}3

1 . These
findings provided by the quasistatic theory are checked with
retarded numerical simulations by calculating z-projected
EMLDOS (upper graph) and EELS and CL (lower graph of
Figure 1d) spectra close to the tip (solid lines) and side (dotted
lines) of a similar nanoprism. Close to the tip, the spectra are
dominated by the contribution from the dipolar modes,34 and
the radiative EMLDOS and CL resonances are respectively red-
shifted compared to the full EMLDOS and EELS resonances.
This red-shift reflects the absorption properties of gold in the
visible range.24 Close to the side, a higher energy resonance is
found only in the full EMLDOS and EELS, showing that the

Figure 1. Full and radiative EMLDOS, and EELS and CL, close to a small gold triangular nanoprism. (a−c) Results obtained from the quasistatic
theory. (a) Sketch of the nanoprism with length L = 40 nm and thickness t = 20 nm. (b) Surface charges of a dipolar (mode 1) and hexapolar mode
(mode 2). (c) Spectral weight of mode 1 (blue continuous line) and mode 2 (blue dashed line) within the full EMLDOS/EELS and of mode 1
within the radiative EMLDOS/CL (red line). (d) Results obtained from retarded simulations: z-projected EMLDOS (upper graph) and EELS and
CL (lower graph) spectra close to the tip (solid lines) and side (dotted lines) of a similar nanoprism. The full and radiative EMLDOS are normalized
to the vacuum EMLDOS. EELS and CL are normalized to their respective maxima.

ACS Photonics Article

DOI: 10.1021/acsphotonics.5b00416
ACS Photonics 2015, 2, 1619−1627

1623

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.5b00416/suppl_file/ph5b00416_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.5b00416


hexapolar mode belongs only to the full EMLDOS and can be
probed only with EELS.
As a second example, we examine a small asymmetric gold

nanocross (Figure 2a). Such an object supports two dipolar SP
modes with parallel dipole moments p1⃗ and p2⃗, whose surface
charges are shown in Figure 2b. In this case, an interference
term contributes to the modal decompositions of the radiative
EMLDOS and CL. In order to evaluate its contribution in the
case of the radiative EMLDOS, we plot in Figure 2c the
noninterfering terms involving separately modes 1 and 2, the
coupled term involving both modes 1 and 2, and the resulting
sum as a function of energy. We also compare this sum to its
full EMLDOS counterpart. The coupled term is slightly positive
below the first resonance and above the second resonance,
while being largely negative between the two resonances. It
leads to an asymmetric line shape when added to the two other
terms, which are symmetric in comparison. On the contrary,
the line shape of the full EMLDOS remains symmetric.
Although the modal decompositions involve slightly different
terms, these findings remain obviously true for EELS and CL.
We compare the predictions from the quasistatic theory to
retarded simulations by calculating z-projected EMLDOS
(upper spectra) and EELS and CL (lower spectra of Figure
2d) spectra close to the left end of a similar nanocross. The
radiative EMLDOS and CL spectra clearly show asymmetric
line shapes, contrary to the full EMLDOS and EELS spectra.
Furthermore, the CL to EELS and radiative EMLDOS to full

EMLDOS ratios are higher around the resonance of mode 1
than around the resonance of mode 2. This is in agreement
with both the facts that mode 1 has a dipole moment larger
than mode 2 and that absorption losses increase with energy in
gold due to interband transitions.
Finally, we perform retarded simulations for long silver

nanowires. For lengths greater than around 100 nm, high-order
longitudinal modes can be probed both in EELS22,32,36−38 and
in CL.12,21,32,38,39 Figure 3 shows calculations of the z-projected
full and radiative EMLDOS as well as EELS and CL along the
axis of a 400 nm long silver wire. The qualitative agreement
between EELS and z-LDOS on one hand and CL and z-rLDOS
on the other is obvious from the plots. While EELS and the full
EMLDOS clearly show high-order longitudinal multipolar
modes up to m = 8, CL and the radiative EMLDOS show
multipoles up to m = 4 only. In accordance with previous
works,21,32,38−40 we note that both the radiative EMLDOS and
CL signal decrease monotonically when the order of the mode
is increased. In particular, modes with zero dipole moment
(e.g., m = 2, 4), which cannot be excited by light with normal
incidence, are efficiently detected in CL. This makes an
important distinction between the radiative modes, which
belong to the radiative EMLDOS and are probed by CL, and
the modes usually denoted as dark in the literature.41,42

Furthermore, the radiative EMLDOS (CL) to full EMLDOS
(EELS) ratio decreases when the order of the mode is
increased.38,40 This trend reflects the reduced radiative

Figure 2. Full and radiative EMLDOS, and EELS and CL, close to a small gold asymmetric nanocross. (a−c) Results obtained from the quasistatic
theory. (a) Sketch of the nanocross with dimensions L1 = 17.5 nm, L2 = 22.5 nm, and l = 5 nm. (b) Surface charges of the two lowest order modes.
p⃗1 and p⃗2 represent their dipole moments. (c) Spectral weights of modes 1 and 2 within the z-projected full EMLDOS (blue line) and the z-projected
radiative EMLDOS (red lines). The expressions for the different terms involved are ω ω= ℑ | ⃗ |−a f E r{ ( )} ( )z

1
3

1 1
2, ω ω= ℑ | ⃗ |−a f E r{ ( )} ( )z

2
3

2 2
2, a11

r = |

f1(ω)|
2|p ⃗1|2|E1z(r)⃗|2, a22r = |f 2(ω)|

2|p ⃗2|2|E2z(r)⃗|2, and ω ω= ℜ * ⃗ · *⃗ ⃗ ⃗*a f f p p E r E r2 { ( ) ( ) ( ) ( )}r z z
12 1 2 1 2 1 2 . These quantities are calculated for a position close to

the left end of the same nanocross. The blue and red arrows respectively emphasize the symmetric and asymmetric character of the resonances. (d)
Results obtained from retarded simulations. z-Projected EMLDOS (upper spectra) and EELS and CL (lower spectra) close to the left end of the
same nanocross. The full and radiative EMLDOS are normalized to the vacuum EMLDOS. EELS and CL are normalized to their respective maxima.
The blue and red arrows emphasize the symmetric (respectively asymmetric) character of the resonances in the full EMLDOS and EELS
(respectively radiative EMLDOS and CL).
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character of the multipolar modes, which is due to both the
increase of absorption losses at higher energies and the
reduction of radiative damping when the multipolar order of
the mode is increased.38,43 Lastly, Figure 4 compares EELS and

CL spectra (b) to z-projected full and radiative EMLDOS

spectra (a) in the case of a 2 μm long wire. Such wires exhibit

asymmetric CL resonances as opposed to symmetric EELS

resonances.32 Similarly, the radiative EMLDOS shows asym-

metric line shapes contrary to the full EMLDOS. These simple

examples illustrate perfectly the link between EELS (CL) and z-

LDOS (z-rLDOS) beyond the quasistatic limit.

■ CONCLUSION
In this article, we have established a clear link between EELS
and the projection along the electron direction of the full
EMLDOS on one hand and CL and the projection along the
electron direction of the radiative EMLDOS on the other.
Starting from a unified formalism based on the use of the Green
tensor, we have analyzed modal decompositions of the full
EMLDOS, the radiative EMLDOS, EELS, and CL in order to
clarify this relationship. Besides probing the radiative modes
only, CL and the radiative EMLDOS can show different
spectral line shapes affected by intermode interferences due to
energy transfer into the far field. These conclusions are
supported by retarded numerical simulations.
This work demonstrates that EELS and CL are advantageous

techniques to locally probe projected full and radiative
EMLDOS over a broad spectral range. As the radiative
character of a mode may be invaluable information, most
particularly in complex systems,44−46 the understanding of SP
modes should highly benefit from combined EELS and CL
experiments. More generally, accessing both the radiative and
full EMLDOS would be desirable in order to efficiently tailor
light−matter interaction at the nanoscale. To go further, the
relation between EELS and the Green tensor combined with
modal decompositions has been shown to be a key ingredient
for a full three-dimensional reconstruction of the EMLDOS out
of EELS data.47 Our extension to CL should be used
appropriately, owing to the recently reported possibility of
CL tomography,48 which follows EELS tomography.49

Eventually, although any mode definition remains delicate in
arbitrary absorbing systems, we note that a retarded mode
expansion of the Green tensor has been proposed.50 The
present work calls for the derivation and analysis of modal
decompositions in a framework including retardation.

■ METHODS
Green Tensor Definitions. In this article, we make use of

the electric Green tensor of a polarizable system described by a
space- and frequency-dependent dielectric function ϵ(r,⃗ ω). It is
defined in Gaussian units by the equation:15

ω ω ω ω

δ

∇⃗ × ∇⃗ × ⃡ ⃗ ′⃗ − ϵ ⃗ ⃡ ⃗ ′⃗

= − ⃗ − ′⃗

G r r
c

r G r r

c
r r

( , , ) ( , ) ( , , )

1
( )

2

2

2 (20)

and is taken to satisfy the vacuum Sommerfeld radiation
boundary condition at infinity. The electric field induced by an
arbitrary external current density distribution Je⃗xt(r,⃗ ω) can then
be expressed as15

∫ω π ω ω ω⃗ ⃗ = − ′⃗ ⃡ ⃗ ′⃗ ⃗ ′⃗E r i r G r r J r( , ) 4 d ( , , ) ( , )ext (21)

Next,10 we introduce the far-field amplitude f(⃗Ω, ω), from
which the far-field limit of the electric field can be written as

ω ω⃗ ⃗ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⃗ Ω
ω

ω

→∞
E r

r
f( , )

e
( , )

r c

i r c

/

/

(22)

where Ω denotes the direction of r.⃗ Direct identification
between eqs 22 and 21 allows introducing the far-field
a s y m p t o t i c G r e e n t e n s o r

ω ω⃡ Ω ′⃗ = ⃡ ⃗ ′⃗ω

ω
∞

−

→∞
G r r G r r( , , ) e lim ( , , )i r c

r c

/

/
as the ωr/c →

∞ limit of the solution of eq 20. The far-field amplitude can be

Figure 3. z-Projected full and radiative EMLDOS, and EELS and CL,
calculated close to a 400 nm long silver nanowire with a diameter of 40
nm. The four quantities are normalized to their respective maxima.
The dashed white lines symbolize the particle edges. The four first
resonances, corresponding to longitudinal multipolar modes, are
denoted as m = 1 to 4.

Figure 4. z-Projected full and radiative EMLDOS (a) and EELS and
CL spectra (b) calculated close to the end of a 2 μm long, 40 nm thick
silver nanowire. The blue and red arrows emphasize the symmetric
(respectively asymmetric) character of the resonances in the full
EMLDOS and EELS (respectively radiative EMLDOS and CL).
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expressed as a function of the far-field asymptotic Green tensor
as

∫ω π ω ω ω⃗ Ω = − ′⃗ ⃡ Ω ′⃗ ⃗ ′⃗∞f i r G r J r( , ) 4 d ( , , ) ( , )ext (23)

General Definitions and Derivation. The projections
along the unit vector en⃗ of the full and radiative EMLDOS are
defined following their usual classical interpretation.2 Precisely,
the full EMLDOS at position r0⃗ and energy ℏω0 is proportional
to the time-averaged power transferred from an electric dipole
point source of dipole moment p ⃗0 located at position r0⃗ and
oscillating at frequency ω0 to its environment. Furthermore, the
radiative EMLDOS at position r0⃗ and energy ℏω0 is
proportional to the power transferred from the same point
source to the far field. Multiplying the expressions in Gaussian
units31 by a prefactor 1/π2|p⃗0|

2ω0
2 leads to eqs 1 and 2, in which

E⃗d(r,⃗ ω) and fd(Ω, ω) are solutions of eqs 21 and 23 with Je⃗xt(r,⃗
ω) = −iωp ⃗0δ(r ⃗ − r0⃗) δ(ω − ω0). Introducing the Green tensor
through eqs 21 and 23 together with the expression for the
electric dipole current density further leads to eqs 5 and 6.
Similarly, EELS and CL are respectively obtained from the

force exerted by the electric field induced by and acting back on
a fast electron and from the energy collected in the far field.
This definition of CL assumes purely coherent light emission
processes.10 After Fourier decomposition, the energy loss and
light emission probabilities can be expressed, for a given
electron trajectory re⃗(t) and a given energy ℏω, as eqs 3 and
4.10 In these expressions, E⃗el

ind(r,⃗ ω) and fe⃗l
ind(Ω, ω) are obtained

from the solutions of eqs 21 and 23, with Je⃗xt(r,⃗ ω) = −ev∫⃗ dt
eiωt δ(r ⃗ − re⃗(t)), by removing the free-space solution. Further
assuming an electron trajectory with a constant velocity v ⃗
directed along z , we obtain eqs 7 and 8, where

∫ ∫

ω

ω

⃗ ⃗ ′

= ′ ′ ′ ⃡ ⃗ + ⃗ ⃗ + ′ ⃗

←→

+

̂
G R R k k

z z G R ze R z e

( , , , , )

d d e ( , , )

z z

i k z k z
z z

ind

( ) ind
z z

i s the

Fourier transform of G⃡
ind

with respect to z and z′ and

∫ω ωΩ ⃗ = ⃡ Ω ⃗ + ⃗
←→

∞ ∞

̂
G R k z G R ze( , , , ) d e ( , , )z

ik z
z

ind
ind

z i s t h e

Fourier transform of ∞⃡G
ind

with respect to z.
Numerical Simulations. Numerical simulations are

performed using the MNPBEM toolbox.26,27 Quasistatic
eigenmodes are calculated numerically using the quasistatic
eigenmode solver. EMLDOS, EELS, and CL spectra are
computed using the retarded solver in combination with the
dipole and fast electron excitation classes. For simplicity, the
CL spectra are computed along a 4π solid angle. The dielectric
function of gold and silver are obtained from ref 35.
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(47) Hoerl, A.; Trügler, A.; Hohenester, U. Full three-dimensonal
reconstruction of the dyadic Green tensor from electron energy loss
spectroscopy of plasmonic nanoparticles. ACS Photonics 2015.
(48) Atre, A. C.; Brenny, B. J.; Coenen, T.; García-Etxarri, A.;
Polman, A.; Dionne, J. A. Nanoscale optical tomography with
cathodoluminescence spectroscopy. Nat. Nanotechnol. 2015, 10, 429.
(49) Nicoletti, O.; de La Peña, F.; Leary, R. K.; Holland, D. J.; Ducati,
C.; Midgley, P. A. Three-dimensional imaging of localized surface
plasmon resonances of metal nanoparticles. Nature 2013, 502, 80−84.
(50) Sauvan, C.; Hugonin, J. P.; Carminati, R.; Lalanne, P. Modal
representation of spatial coherence in dissipative and resonant
photonic systems. Phys. Rev. A: At., Mol., Opt. Phys. 2014, 89, 043825.

ACS Photonics Article

DOI: 10.1021/acsphotonics.5b00416
ACS Photonics 2015, 2, 1619−1627

1627

http://dx.doi.org/10.1021/acsphotonics.5b00416

